SNFGE SNFGE
 
Thématique :
- MICI
Originalité :
Très original
Solidité :
Intermédiaire
Doit faire évoluer notre pratique :
Pas encore
 
 
Nom du veilleur :
Docteur Stéphane NAHON
Coup de coeur :
 
 
Clinical Gastroenterology and Hepatology
  2019/04  
 
  2019 Apr;17(5):905-913.  
  doi: 10.1016/j.cgh.2018.08.068.  
 
  Colonic MicroRNA Profiles, Identified by a Deep Learning Algorithm, That Predict Responses to Therapy of Patients With Acute Severe Ulcerative Colitis  
 
  Morilla I, Uzzan M, Laharie D, Cazals-Hatem D, Denost Q, Daniel F, Belleannee G, Bouhnik Y, Wainrib G, Panis Y, Ogier-Denis E, Treton X  
  https://www.ncbi.nlm.nih.gov/pubmed/30223112  
 
 

Abstract

BACKGROUND & AIMS:

Acute severe ulcerative colitis (ASUC) is a life-threatening condition managed with intravenous steroids followed by infliximab, cyclosporine, or colectomy (for patients with steroid resistance). There are no biomarkers to identify patients most likely to respond to therapy; ineffective medical treatment can delay colectomy and increase morbidity and mortality. We aimed to identify biomarkers of response to medical therapy for patients with ASUC.

METHODS:

We performed a retrospective analysis of 47 patients with ASUC, well characterized for their responses to steroids, cyclosporine, or infliximab, therapy at 2 centers in France. Fixed colonic biopsies, collected before or within the first 3 days of treatment, were used for microarray analysis of microRNA expression profiles. Deep neural network-based classifiers were used to derive candidate biomarkers for discriminating responders from non-responders to each treatment and to predict which patients would require colectomy. Levels of identified microRNAs were then measured by quantitative PCR analysis in a validation cohort of 29 independent patients-the effectiveness of the classification algorithm was tested on this cohort.

RESULTS:

A deep neural network-based classifier identified 9 microRNAs plus 5 clinical factors, routinely recorded at time of hospital admission, that associated with responses of patients to treatment. This panel discriminated responders to steroids from non-responders with 93% accuracy (area under the curve, 0.91). We identified 3 algorithms, based on microRNA levels, that identified responders to infliximab vs non-responders (84% accuracy, AUC = 0.82) and responders to cyclosporine vs non-responders (80% accuracy, AUC = 0.79).

CONCLUSION:

We developed an algorithm that identifies patients with ASUC who respond vs do not respond to first- and second-line treatments, based on microRNA expression profiles in colon tissues.

 

 
Question posée
 
Existe-t-il des biomarqueurs de réponse au traitement au cours de la colite aiguë grave ?
 
Question posée
 
Ce travail a permis d’identifier en utilisant des algorithmes développés grâce à l’intelligence artificielle des niveaux de micro-ARN susceptible de prédire la réponse aux corticoïdes, anti-TNF et ciclosporine.
 
Commentaires

Nous avons grandement besoin de marqueurs biologiques pour guider nos choix thérapeutiques aux cours des MICI et notamment dans la situation de la colite grave. Ce travail français préliminaire nous donne des perspectives de ce que pourra être la médecine à la carte de demain basé sur des biomarqueurs couplé à l’intelligence artificielle.

 
www.snfge.org