SNFGE SNFGE
 
Thématique :
- Endoscopie/Imagerie
Originalité :
Très original
Solidité :
A confirmer
Doit faire évoluer notre pratique :
Pas encore
 
 
Nom du veilleur :
Docteur Guillaume Perrod
Coup de coeur :
 
 
Gastroenterology
  2018/10  
 
  2018 Oct;155(4):1069-1078.e8.  
  doi: 10.1053/j.gastro.2018.06.037.  
 
  Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy.  
 
  Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W, Baldi P  
  https://www.ncbi.nlm.nih.gov/pubmed/29928897  
 
 

Abstract

BACKGROUND & AIMS:

The benefit of colonoscopy for colorectal cancer prevention depends on the adenoma detection rate (ADR). The ADR should reflect the adenoma prevalence rate, which is estimated to be higher than 50% in the screening-age population. However, the ADR by colonoscopists varies from 7% to 53%. It is estimated that every 1% increase in ADR lowers the risk of interval colorectal cancers by 3%-6%. New strategies are needed to increase the ADR during colonoscopy. We tested the ability of computer-assisted image analysis using convolutional neural networks (CNNs; a deep learning model for image analysis) to improve polyp detection, a surrogate of ADR.

METHODS:

We designed and trained deep CNNs to detect polyps using a diverse and representative set of 8,641 hand-labeled images from screening colonoscopies collected from more than 2000 patients. We tested the models on 20 colonoscopy videos with a total duration of 5 hours. Expert colonoscopists were asked to identify all polyps in 9 de-identified colonoscopy videos, which were selected from archived video studies, with or without benefit of the CNN overlay. Their findings were compared with those of the CNN using CNN-assisted expert review as the reference.

RESULTS:

When tested on manually labeled images, the CNN identified polyps with an area under the receiver operating characteristic curve of 0.991 and an accuracy of 96.4%. In the analysis of colonoscopy videos in which 28 polyps were removed, 4 expert reviewers identified 8 additional polyps without CNN assistance that had not been removed and identified an additional 17 polyps with CNN assistance (45 in total). All polyps removed and identified by expert review were detected by the CNN. The CNN had a false-positive rate of 7%.

CONCLUSION:

In a set of 8,641 colonoscopy images containing 4,088 unique polyps, the CNN identified polyps with a cross-validation accuracy of 96.4% and an area under the receiver operating characteristic curve of 0.991. The CNN system detected and localized polyps well within real-time constraints using an ordinary desktop machine with a contemporary graphics processing unit. This system could increase the ADR and decrease interval colorectal cancers but requires validation in large multicenter trials.

 

 
Question posée
 
La détection automatisée des polypes coliques en temps réel est-elle aussi efficace que l’œil humain ?
 
Question posée
 
OUI. Dans cette étude, le taux de détection d’adénome (ADR) était quasi similaire entre un groupe d’endoscopiste expert et le logiciel de détection développé par deep learning (convolutional neural network - CNN).
 
Commentaires

- Les logiciels d’aide à la détection de polypes sont nécessaires car ils pourraient permettre une augmentation de l’ADR et donc une diminution du taux de cancer colorectal d’intervalle. Ici, la précision diagnostique croisée était de 96% et a permis la détection de 20 polypes supplémentaires

- Il existe de nombreuses équipes travaillant sur le développement de logiciels en deep learning. Ils nécessitent la constitution de bases de données conséquentes (8000 -50000 images annotées), constamment actualisées.

 
www.snfge.org